Zobacz 1 odpowiedź na zadanie: podczas podnoszenia piłki ruchem jednostajnym na wysokość 2m wykonano pracę 4 j.Jaka jest masa tej piłki? PROSZE O DANE, SZUKANE, WZÓR, I ROZWIĄZANIE !!! dam naj !!!! zad.1 i 2 str. 24 1. Ciało spada swobodnie z wysokości 5m.Jaką szybkość osiągnie w momencie uderzenia o ziemie ? 2. Na jaką wysokość wzniosłyby sie ciała rzucone na ziem pionowo zdo góry z szybkością 100m/s,gdyby nie było powietzra ?? Od rakiety, wznoszącej się pionowo do góry, w momencie, gdy ma prędkość odczepia się na wysokości niepotrzebny już zbiornik paliwa. Obliczyć czas spadania oraz prędkość z jaką zbiornik spadł na ziemię. Przyspieszenie ziemskie - dane. Opór powietrza pominąć. rakieta ma poczatkowo predkosc. czy jak leci do gory, to ja traci ? Jaką szybkość uzyska po 2s ruch: a) 2m b) 10m/s c) 20m/s d) 2m/s e) nie wiadomo f) 20m 10) Ciało porusza się z przyspieszeniem 4m/s 2 . W każdej sekundzie jego szybkość rośnie o: a) 4m b) 2m/s c) 4m/s d) 8m/s e) trudno powiedzieć f) 4s 11) Pojazd poruszał się ruchem jednostajnie przyspieszonym z przyspieszeniem 5m/s 2 . Wyznacz jaka energie kinetyczna uzyska tenb kamien w momencie upadku na ziemie. Ep=mgh. Ep=10kg*10m/s²*30m. Ep=3000J. W tym miejscu należy skorzystać z zasady zachowania energii, która mówi że max energia potencjalna w chwili uderzenia ciała o ziemię zamieni się w energię kinetyczną. Na tej podstawie możemy zapisać że: Ek=Ep. Ek=3000J Deet04 Zad2 A) bad worse the worsed amazing amazinger the most awazingest amusing amusinger the most amusingerst dull duller the dullest cheap cheaper the most cheaperst Zad 4 Słowa która masz wpisać w kolejności-a) beautyfuller b) colder c) the most attractiver d) th most interestied e) frendliest licze na naj sora zae zadania 1i 3 nie ogarniam Ilustracja 3.18 (a) Wykres prędkości w funkcji czasu w przypadku ruchu ze stałym przyspieszeniem od wartości początkowej v 0 do końcowej v . Prędkość średnia wynosi ( v 0 + v) / 2 = 60 k m / h . (b) Wykres prędkości w funkcji czasu ze zmiennym przyspieszeniem. Prędkość średnia nie jest równa ( v 0 + v) / 2, lecz jest większa 5. czas lotu piłki do chwili gdy spadnie na ziemię tl. Zad. 4. Ciało zostało wyrzucone poziomo na wysokości H=10 m z prędkością początkową v0=20 m/s. Wyznacz: 1. równanie ruchu ciała wzdłuż osi x i osi y czyli x(t) i y(t), 2. tor ruchu y(x), 3. czas lotu ciała tl czyli czas, po którym spadnie na ziemię 4. zasięg rzutu z, 5. Ciało spadło swobodnie z wysokości 15m.Jaką prędkość osiągnie w chwili upadku? 2008-12-09 18:15:51 jaką drogę przebywa spadające swobodnie ciało w czasie 1s 2010-01-11 17:45:14 Jaką prędkość uzyska ciało spadające z wysokości 50m? 2015-09-22 17:58:32 Opublikowano 13.05.2018 na ten temat fizyka from guest. Haneck ratuj z wysokości 10 m spadają jednocześnie na ziemię w próżni stalowa kulka o średnicy 0,5 cm oraz piórko natomiast w powietrzu piłeczka pingpongowa i stalowa. Source: naszamlawa.pl Ttt6. Test z matematyki pisało 20 zdobytych punktów były następujące:11,14,14,15,15,17,17,18,18,19,29,30,35,35,38,38,39,40,40 a)Oblicz średnią arytmetyczną zdobytych jest mediana wyników?c)Andrzej napisał poniżej średniej,ale lepiej niż 50% punktów otrzymał?NA TERAZ PLIISSSSS!!!! Answer Cześć mam problem z rozwiązaniem tych zadań. Proszę was o pomoc w rozwiązaniu. Jak się za to zabrać z czego skorzystać z jakich wzorów itp. Moja ułomność polega na tym, że fizyka to dla mnie inny świat . 1. Piłka została rzucona pionowo do góry z prędkością początkową 24,5 m/s. Po czasie osiągnie ona swoje najwyższe położenie? jak wysoko się wzniesie? Po jakim czasie znajdzie się na wysokości 29,4 m nad ziemią? 2. Ciało rzucono poziomo z prędkością v0. Po jakim czasie od chwili rozpoczęcia ruchu wartość liczbowa składowej poziomej i pionowej prędkości są sobie równe? 3. Energia potencjalna ciała rzuconego ukośnie jest w najwyższym punkcie toru równa połowie jego maksymalnej energii kinetycznej. Pod jakim kątem zostało rzucone ciało? 4. Ciało zostało rzucone poziomo z prędkością v0 = 15 m/s z wysokości 100 m. Znaleźć: przyspieszenie normalne i styczne po upływie czasu t = 1 s od początku ruchu ciała, zasięg rzutu, prędkość ciała w chwili upadku na ziemię. 5. Pocisk o masie 5 kg wylatuje z armaty z prędkością 500 m/s pod kątem 38º do poziomu. Wyznaczyć zasięg pocisku, wysokość najwyższego punktu toru pocisku i prędkość pocisku w chwili upadku na ziemię. qaz Użytkownik Posty: 486 Rejestracja: 28 paź 2006, o 21:56 Płeć: Kobieta Lokalizacja: Gobbos' Kingdom Podziękował: 311 razy Pomógł: 5 razy rakieta i zbiornik paliwa Mam następujące zadanie z działu: "rzuty i swobodny spadek". Od rakiety wznoszącej się pionowo do góry, w momencie, gdy ma ona prędkość \(\displaystyle{ V_{0y}}\) odczepia się na wysokości \(\displaystyle{ h}\) niepotrzebny już zbiornik paliwa. Obliczyć czas spadania \(\displaystyle{ t}\) oraz prędkość \(\displaystyle{ v}\) z jaką zbiornik spadł na ziemię. Przyspieszenie ziemskie \(\displaystyle{ g}\) - dane. Opór powietrza pominąć. Będę wdzięczna za wszelką pomoc. blost Użytkownik Posty: 1994 Rejestracja: 20 lis 2007, o 18:52 Płeć: Mężczyzna Podziękował: 52 razy Pomógł: 271 razy rakieta i zbiornik paliwa Post autor: blost » 30 mar 2008, o 15:06 najpierw obliczamy ile on jeszcze wyleci do góry po tym jak się odłączy \(\displaystyle{ h _{2} = \frac{v _{0y} ^{2} }{2g}}\) teraz mamy drogę i przysmieszenie więc obliczamy czas \(\displaystyle{ s=h+ \frac{v _{0y} ^{2} }{2g}}\) \(\displaystyle{ h+ \frac{v _{0y} ^{2} }{2g}= \frac{at ^{2} }{2}}\) \(\displaystyle{ t= \sqrt{ \frac{2(h+ \frac{v _{0y} ^{2} }{2g})}{a} }}\) i teraz obliczamy predkosc \(\displaystyle{ v _{k} = a \sqrt{ \frac{2(h+ \frac{v _{0y} ^{2} }{2g})}{a} }}\) oczywiscie \(\displaystyle{ a=g}\) mam nadzieję ze nigdzie sie nie pomylilem qaz Użytkownik Posty: 486 Rejestracja: 28 paź 2006, o 21:56 Płeć: Kobieta Lokalizacja: Gobbos' Kingdom Podziękował: 311 razy Pomógł: 5 razy rakieta i zbiornik paliwa Post autor: qaz » 30 mar 2008, o 18:38 w odpowiedziach jest: \(\displaystyle{ v=\sqrt{v_{0y}^2+2gh}}\) \(\displaystyle{ t=\frac{v_{0y +\sqrt{v_{0y}^2+2gh}}}{g}}\) to \(\displaystyle{ t}\) mi się zgadza, bo mam: \(\displaystyle{ h_1}\) - wysokośc całkowita na jaką wzniesie się ciało: \(\displaystyle{ h_1=h+v_{0y}t-\frac{gt^2}{2}}\) aby obliczyć czas przyjmuję \(\displaystyle{ h_1=0}\) a stąd równanie ma 2 pierwiastki, jeden jest ujemny a drugi taki jak \(\displaystyle{ t}\) w odpowiedziach. Problem w tym, że z tego \(\displaystyle{ v}\) za nic nie chce wyjść. Co z tym zrobić